Меню

Культивирование и индикация вирусов



Микробиология. Общий тест с ответами

Микробиология. Общий тест с ответами

Сущность научного открытия Д. И. Ивановского:
+ открытие вирусов

Темнопольная микроскопия применяется для изучения:
+ бледной трепонемы

Назовите метод окраски, применяемый для возбудителей туберкулеза:
+ Циль-Нильсена

Shigella flexneri вызывает:
+ дизентерию

К спорообразующим бактериям относятся:
+ клостридии

Возбудителем сыпного тифа является:
+ Borrelia recurrentis

Возбудителем сибирской язвы является:
+ Bacillus anthracis

Какой из видов клостридий вызывает развитие псевдомембра-нозного колита на фоне антибиотикотерапии?
+ Clostridium difficile

Основным механизмом молекулярного действия хинолонов является:
+ ингибирование синтеза ДНК

Ингибирование синтеза клеточной стенки характерно для:
+ ампициллина

Препаратом выбора при лечении хламидийной инфекции является:
+ азитромицин

Антибиотиком выбора при лечении госпитальных инфекций, вызванных штаммами метициллинрезистентных стафилококков, является:
+ ванкомицин

Антибиотиком выбора для лечения инфекций, вызванных облигатными неспорообразующими анаэробами, является:
+ клиндамицин

Энтеротоксин продуцируется бактерией:
+ Vibrio cholerae

Ботулинический токсин по механизму действия на клетку-мишень является:
+ блокатором передачи нервного импульса

Дифтерийный токсин является:
+ гистотоксином

Эндотоксин играет основную роль в патогенезе инфекции, вызываемой:
+ Salmonella typhi

Развитие диареи связано с действием:
+ термолабильного энтеротоксина

Дифтерийный токсин по механизму действия на клетку-мишень является:
+ ингибитором синтеза белка

Clostridium tetani вызывает следующий тип инфекции:
+ токсинемию

Бактериологический метод диагностики применяется для:
+ выделения и идентификации бактерий – возбудителей заболеваний

В качестве исследуемого материала для серологической диагностики (определение титра антител) используют:
+ сыворотку крови
Какой метод используют для стерилизации сыворотки крови:
+ фильтрование с помощью мембранных фильтров

Применение какого вакцинного препарата связано с формированием стойкого местного иммунитета:
+ пероральной трехвалентной полиомиелитной вакцины

Выберите из перечисленных вакцинных препаратов препарат, относящийся к группе лечебных вакцин:
+ гонококковая вакцина

Вакцина БЦЖ относится к типу:
+ живых аттенуированных

Вакцина против гепатита В представляет собой:
+ генноинженерную дрожжевую вакцину

Какие вирусы содержат в составе вириона обратную транскриптазу:
+ ретровирусы

С именем Луи Пастера связаны следующие научные открытия:
+ разработка метода аттенуации микроорганизмов;
б) открытие явления фагоцитоза;
+ создание антирабической вакцины;
+ открытие и изучение процессов брожения у микроорганизмов;
д) введение в практику микробиологии метода выделения чистых культур бактерий на плотных питательных средах.

К грамотрицательным бактериям относятся:
+ энтеробактерии;
б) клостридии;
+ псевдомонады;
+ бактероиды;
+ нейссерии.

К кокковым формам микроорганизмов относятся: a) Neisseria meningitides;
б) Klebsiella pneumoniae;
+ Streptococcus pneu-moniae;
г) Bacteroides fragilis;
+ Staphylococcus aureus.

К облигатным анаэробам относятся:
а) коринебактерии;
б) бациллы;
+ бактероиды;
+ клостридии;
+ бифидобактерии.

К бактериям, образующим эндоспоры, относятся:
+ бациллы;
б) бифидобактерии;
+ клостридии;
г) стафилококки;
д) лактобактерии.

К микроорганизмам с прокариотным типом организации клетки относятся:
а) плесневые грибы;
+ спирохеты;
+ хламидии;
+ микоплазмы;
+ актиномицеты.

Световая микроскопия включает в себя следующие разновидности:
+ фазово-контрастную микроскопию;
б) электронную микроскопию;
+ темнопольную микроскопию;
+ микроскопию в затемненном поле;
+ иммерсионную микроскопию.

К методам холодной стерилизации относятся:
а) стерилизация текучим паром;
+ стерилизация УФ-облучением;
+ стерилизация при помощи бактериальных фильтров;
г) стерилизация паром под давлением;
д) сухожаровая стерилизация.

Какие питательные среды используют для культивирования стрептококков:
а) мясо-пептонный агар;
+ кровяной агар;
+ сывороточный агар;
г) среду Эндо;
д) желточно-солевой агар.

Мишенями для антибиотиков в бактериальной клетке являются:
+ клеточная стенка;
+ нуклеоид;
+ цитоплазматическая мембрана;
г) споры;
+ рибосомы.

Какие методы применяют для определения чувствительности микроорганизмов к антибиотикам:
+ метод диффузии в агар (метод дисков);
б) метод двойной иммунодиффузии в геле по Оухтерлони;
+ метод серийных разведений;
г) метод радиальной иммунодиффузии в геле по Манчини;
д) метод иммунофлюоресценции.

Для лечения инфекций бактероидной этиологии используют:
+ клиндамицин;
канамицин;
+ метронидазол;
ципрофлоксацин.

Какие из приведенных утверждений являются правильными:
+ реализация приобретенной лекарственной устойчивости возможна путем инактивации антибиотика бактериальным ферментом;
+ бета-лактамазы – ферменты, продуцируемые бактериями и разрушающие бета-лактамное кольцо соответствующих антибиотиков;
в) бета-лактамазы используются в качестве антибактериальных препаратов;
+ клавулановая кислота является ингибитором бета-лактамаз;
д) клавулановая кислота используется в качестве самостоятельного антибактериального препарата.

В состав биотерапевтических препаратов, применяемых для коррекции микрофлоры кишечника, входят:
+ бифидобактерии;
+ лактобактерии;
в) стафилококки;
г) сальмонеллы;
+ эшерихии.

Представителями нормальной микрофлоры влагалища являются:
+ лактобактерии;
+ бифидобактерии;
+ стрептококки;
г) клостридии;
+ бактероиды.

Антитоксическими лечебно-профилактическими сыворотками являются:
+ противоботулиническая;
+ противостолбнячная;
+ противодифтерийная;
г) противолептоспирозная;
+ противо-гангренозная.

Какие препараты используются для активной иммунизации:
+ менингококковая вакцина;
+ АКДС;
в) противодифтерийная сыворотка;
г) интерферон;
д) иммуноглобулин человека нормальный.

Свойствами, характерными для бактериальных экзотоксинов, являются:
+ специфичность действия;
+ термолабильность;
+ возможность перехода в анатоксин;
г) липополисахаридная химическая природа;
+ избирательная фиксация на рецепторах клеток-мишеней.

Действие эндотоксина проявляется следующими биологическими эффектами:
+ пирогенным;
+ увеличением проницаемости сосудистой стенки;
+ активацией системы комплемента;
г) диареей;
д) развитием параличей.

При каких инфекциях основную роль в развитии инфекционного процесса играет экзотоксин возбудителя:
+ столбняк;
+ холера;
+) дифтерия;
г) гонорея;
+ ботулизм.

Основными факторами патогенности синегнойной палочки являются:
+ экзотоксин А;
+ гемолизины;
+ протеолитические ферменты;
+ гликопротеид экстрацеллюлярной слизи;
д) нейротоксин.

К факторам естественной резистентности организма относятся:
а) специфические антитела;
+ интерферон;
+ естественные киллеры (NK);
+ макрофаги;
+ система комплемента.

К антропонозным инфекциям относятся:
а) кампилобактериоз;
+ шигеллез;
+ брюшной тиф;
+ гонорея;
д) легионеллез.

Воздушно-капельным путем передаются:
а) сыпной тиф;
+ дифтерия;
+ корь;
г) гепатит А;
+ коклюш.

К молекулярно-генетическим методам диагностики относятся:
+ полимеразная цепная реакция (ПЦР);
+ ДНК-ДНК-гибридизация;
в) латекс-агглютинация;
г) реакция связывания комплемента (РСК);
д) реакция непрямой гемагглютинации (РИГА).

К методам экспресс-диагностики относятся:
а) бактериологический;
+ иммунофлюоресценция;
в) биологический;
+ ПЦР;
д) вирусологический.

К серологическим реакциям относятся:
+ РСК (реакция связывания комплемента);
+ РНГА (реакция непрямой гемагглютинации);
в) реакция вирусной гемагглютинации;
+ реакция преципитации;
д) ПЦР (полимеразная цепная реакция).

В каких серологических реакциях участвует комплемент:
а) преципитации;
б) агглютинации;
+ РСК;
+ иммунного гемолиза;
д) иммунофлюоресценции.

В диагностике вирусных инфекций применяют методы:
+ вирусологический;
+ микроскопический;
+ серологический; аллергический;
д) бактериологический.

В диагностике гепатита В используют методы:
а) выделение возбудителя в культуре клеток;
б) заражение чувствительных лабораторных животных;
+ выявление циркулирующих антител к антигенам вируса в сыворотке крови;
+ выявление антигенов возбудителя в исследуемом материале;
д) кожно-аллергические пробы.

Характерными свойствами вирусов являются:
+ наличие одного типа нуклеиновой кислоты;
б) способность синтезировать экзотоксины;
+ абсолютный паразитизм;
+ отсутствие собственного белоксинтезирующего аппарата;
+ дизъюнктивный способ репродукции.

Противовирусными препаратами являются:
а) антибиотики;
+ интерфероны;
+ аномальные нуклеозиды;
+ иммуноглобулины;
д) бактериофаги.

В состав сложных вирусов входят:
+ капсид;
б) суперкапсид;
+ нуклеиновая кислота;
+ матриксный белок;
д) рибосомы.

К сложным вирусам относятся:
а) вирус полиомиелита;
+ вирус кори;
+ вирус гриппа;
г) вирус гепатита А;
+ вирус гепатита В.

Пассивный искусственный иммунитет формируется при использовании следующих препаратов:
а) химических вакцин;
б) генноинженерных вакцин;
+ антитоксических сывороток;
+ противовирусных иммуноглобулинов;
д) бифидумбактерина.

Обязательная плановая вакцинация проводится для профилактики:
+ столбняка;
+ холеры;
в) брюшного тифа;
г) дифтерии;
+ туберкулеза.

Эхинококкозом человек заражается при:
+ проглатывании яиц паразита

Аутоинвазия часто наблюдается при:
+ энтеробиозе

Переносчиками возбудителей болезни Лайма и весенне-летнего энцефалита являются:
+ иксодовые клещи

Дифференциальная диагностика инвазии свиным и бычьим цепнем основана на:
+ различиях в строении члеников

Анкилостомы проникают в органы человека:
+ через неповрежденную кожу

Заражение трихоцефалезом происходит при:
+ несоблюдении правил личной гигиены

Чесоточный зудень является представителем:
+ паукообразных

Поражение кожи при купании летом в стоячих водоемах может быть вызвано:
+ проникновением личинок шистозом

Трансмиссивный способ заражения характерен для:
+ лейшманиозов

Термическая обработка речной рыбы необходима для профилактики:
+ описторхоза

Необходимо проводить микроскопическое исследование биопсийного материала при диагностике:
+ трихинеллеза

Орган человека, в котором невозможно паразитирование личинок свиного цепня:
+ тонкий кишечник

Заболевание беременной женщины, которое может осложнить прогноз рождения здорового ребенка:
+ токсоплазмоз

Ген – это:
+ участок молекулы ДНК

При образовании дизиготных близнецов:
+ две разные яйцеклетки оплодотворяются двумя разными сперматозоидами

В ядре сперматозоида человека содержатся хромосомы:
+ 22 аутосомы и X или Y

Для Х-сцепленного рецессивного типа наследования характерно:
+ у здоровых родителей больным ребенком может быть только мальчик

При синдроме Шерешевского-Тернера обнаруживается кариотип:
+ 45 Х0

Близкая к 100% конкордантность у монозиготных близнецов и низкая конкордантность у дизиготных близнецов свидетельствует о:
+ наследственной природе признака

Нецелесообразно исследовать половой хроматин для диагностики синдрома:
+ Дауна

Невозможно диагностировать цитогенетическим методом заболевание:
+ гемофилия

Из перечисленных заболеваний является мультифакторным?
+ сахарный диабет

К атавистическим порокам развития не относится:
+ поликистоз почек

Диагноз синдрома кошачьего крика наиболее точно можно поставить:
+ методом дифференциальной окраски хромосом

Расы современного человека представляют собой:
+ разные популяции

Генные мутации возникают в результате нарушений:
+ репликации и репарации ДНК

Диагноз генных наследственных болезней ставится на основе данных:
+ биохимического исследования

Источник

Культивирование и индикация вирусов

Культивирование вирусов человека проводят с целью лабораторной диагностики вирусных инфекций, для изучения вопросов патогенеза и иммунитета, для получения диагностических и вакцинных препаратов.

Для культивирования вирусов используют лабораторных животных, развивающиеся куриные эмбрионы, культуры клеток.

Лабораторных животных разными способами заражают (учитывают тропизм вирусов: ортомиксовирусами заражают интраназально, нейровирусами – субдурально). На основании типичных признаков заболевания и патоморфологических изменений органов животных можно судить о репродукции вирусов, т.е. проводить индикацию вирусов.

Куриный эмбрион является удобной моделью для культивирования вирусов, т.к. полости его стерильны, защищены твердой оболочкой. Индикацию вируса в курином эмбрионе проводят: по гибели эмбриона; помутнению хорион-аллантоисной оболочки; образованию бляшек на оболочке; в реакции гемагглютинации (происходит склеивание эритроцитов под действием гемагглютинина вирусов, который расположен в шипах суперкапсида).

Метод культур клеток. Для приготовления культур клеток используют различные ткани человека и животных. Чаще применяют культуры клеток из эмбриональных (куриные фибробласты, человеческие фибробласты) и опухолевых (злокачественно перерожденных) тканей, обладающих активной способностью к росту и размножению.

Различают три типа культур клеток: однослойные культуры клеток; культуры суспензированных клеток; органные культуры.

Однослойные культуры клеток по числу жизнеспособных генераций разделяют на первичные или первично трипсинизированные (куриные и человеческие фибробласты); перевиваемые (способны размножаться в лабораторных условиях длительное время); полуперевиваемые диплоидные (способны размножаться в течение 40-50 пассажей).

Для культивирования клеток необходимы питательные среды, которые по своему назначению делятся на ростовые и поддерживающие. В составе ростовых питательных сред должно содержаться больше питательных веществ, чтобы обеспечить активное размножение клеток для формирования монослоя. Поддерживающие среды должны обеспечивать лишь переживание клеток в уже сформированном монослое при размножении в клетке вирусов.

Широкое применение находят стандартные синтетические среды, например, синтетическая среда 199 и среда Игла. Независимо от назначения все питательные среды для культур клеток конструируются на основе сбалансированного солевого раствора. Чаще всего им является раствор Хенкса. Неотъемлемый компонент большинства ростовых сред – наличие 5-10 % сыворотки крови животных (телячьей, бычей, лошадиной), без наличия которой размножение клеток и формирование монослоя не происходит. В состав поддерживающих сред сыворотка не входит.

Культуры суспензированных клеток растут и размножаются во взвешенном состоянии при постоянном интенсивном перемешивании среды. Они используются для накопления вирусов.

Некоторые вирусы размножаются в органных культурах – это кусочки органов, выращенные вне организма и сохраняющие структуру данного органа.

О размножении вируса в культуре клеток судят по следующим признакам: цитопатогенному действию (ЦПД); образованию в клетках включений; появлению бляшек; феномену гемадсорбции; цветной пробе.

Цитопатогенное действие может проявляться полной дегенерацией клеток – слущиванием клеток с поверхности стекла после их гибели (энтеровирусы полиомиелита, Коксаки); частичной дегенерацией – округлением клеток, слиянием и образованием симпластов (вирус кори).

Образование включений в клетках – это скопление вирионов или отдельных компонентов в цитоплазме или в ядре клеток, выявляемые под микроскопом при специальном окрашивании. Вирус натуральной оспы образует цитоплазматические включения – тельца гварниери, вирусы герпеса, аденовирусы – внутриядерные включения.

Появление бляшек – зоны клеток, разрушенных вирусом (негативные колонии вирусов), обнаруживают в клеточных культурах, растущих на стекле и покрытых тонким слоем агара. Бляшки различаются по величине, форме, времени появления, поэтому данный тест используют для дифференциации вирусов.

Читайте также:  Что понимают под экологическим правонарушением тест

Реакция гемадсорбции заключается в способности клеток, зараженных вирусами, адсорбировать на своей поверхности эритроциты, потому что эти клетки несут на поверхности гемагглютинины вируса.

Цветная реакция основана на изменении цвета питательной среды с индикатором, используемой для культур клеток. При росте клеток, не пораженных вирусом, идет накопление продуктов метоболизма, которые изменяют цвет питательной среды. При репродукции вирусов в культуре нарушается метаболизм клеток, и среда сохраняет первоначальный цвет.

При отсутствии ЦПД можно поставить реакцию интерференйии – исследуемая культура повторно заражается вирусом, вызывающим ЦПД. В положительном случае ЦПД будет отсутствовать (реакция интерференции положительная), если в исследуемом материале вируса не было, наблюдается ЦПД.

Лабораторная диагностика вирусных инфекций.Используют методы экспресс-диагностики для обнаружения возбудителя или его антигенов в клиническом материале (ИФА, РИА, метод молекулярной гибридизации, ИФА, ПЦР, ВИЭФ, РПГА, электронной микроскопии, иммуно электронной микроскопии).

Выделение вируса и его индикацию и идентификацию проводят в вирусологическом методе диагностики. С этой целью необходимо обеспечить взятие материла от больного, правильную транспортировку его в лабораторию и грамотного заполнения сопроводительных документов. Выделение вируса из клинического материала проводят путем заражения культур клеток куриных эмбрионов и лабораторных животных. Индикацию вирусов проводят по гибели эмбрионов, постановке РГА, ЦПД в культуре клеток.

Идентификацию вирусов проводят с помощью серологических методов (постановки РТГА, РСК, ИФА, РИА, РН). Серологическая диагностика вирусных инфекций проводится с парными сыворотками больного, взятыми в острой фазе заболевания и через 10-14 дней. Обнаружение четырехкратного и более повышения титра антител рассматривается как диагностический признак острой вирусной инфекции.

Принципы химиотерапии и химипрофилактики вирусных инфекций.Мишенью действия противовирусных препаратов являются процессы адсорбции, проникновения вируса в клетку, депротеинизации, транскрипции, репликации и сборки вирусов.

1. Аномальные нуклеозиды ингибируют функции вирусных полимераз (иоддезоксиуредин, ацикловир при лечении герпеса).

2. Производные адамантамина гидрохлорида. Ремантадин ингибирует репролукцию вирусов гриппа, кори, краснухи

3. Тиосемикарбазон подавляет синтез вирусных белков и сборки вирусных частиц, активен против вирусов натуральной оспы.

4. Ингибиторы протеаз (гордокс, контрикал, аминокапроновая кислота).

5. Нарушают синтез вирусных белков – интерфероны.

Бактериофаги (от бактерий и греч, рhagos-пожиратель) – вирусы бактерий, обладающие способностью специфически проникать в бактериальные клетки, репродуцироваться в них и вызывать их лизис. Они не размножаются в эукариотических клетках.

В 1910 г. Ф. д’Эрелль обнаружил лизис бактерий дизентерии после добавления к ним бесклеточного фильтрата испражнений больных дизентерией и назвал фактор лизиса бактериофагом.

Бактериофаги широко распространены в природе, их обнаруживают в воде, почве, пищевых продукта, в различных выделениях из организма человека и животных.

Морфология. Большинство фагов под электронным микроскопом напоминают по форме головастика или сперматозоида; имеют головку и отросток (рис. 8), но встречаются и другие морфологические варианты. Размеры фагов – 20-200 нм. Выделяют пять основных типов бактериофагов. К 1 типу относятся ДНК-овые фаги нитевидной формы, которые лизируют бактерии, содержащие F- или R-плазмиду; II тип – РНК-содержащие фаги с рудиментом отростка; III тип – фаги ТЗ, Т7 с коротким отростком; IV тип – фаги с несокращающимся чехлом отростка и двунитевой ДНК (Т1, Т5 и др.); V тип – ДНК-содержащие фаги с сокращающимся чехлом отростка, который заканчивается базальной пластинкой. Наиболее изучены Т-фаги (англ. type – типовые) E.coli – группа коли-дизентерийных фагов, включающая 7 представителей Т1-Т7.

Структура. Фаги имеют нуклеиновую кислоту (ДНК или РНК) и белок. Двунитевая ДНК фагов замкнута в кольцо и упакована в головке. Некоторые фаги содержат однонитевую ДНК или РНК. Капсид головки фага образован белками по кубическому типу симметрии.

В частицах некоторых фагов под чехлом дистальной части отростка (фаг T2) содержится фермент лизоцим, АТФ-аза и ионы кальция. Внутри головки (фаг T2) имеется внутренний белок, связанный с нуклеиновой кислотой, который содержит полиамины (спермин, путресцин). Он обеспечивает суперспирализацию фаговой ДНК и ее упаковку в головке фага. Отросток (хвост) фага имеет полый белковый стержень (построен по типу спиральной симметрии), покрытый сократительным чехлом. Белки чехла связаны с молекулами АТФ и ионами кальция. Чехол способен сокращаться. Под чехлом в конце отростка может находиться лизоцим. Отросток обычно заканчивается базальной пластинкой, имеющей короткие зубцы, от которых отходят тонкие нити – структуры, обеспечивающие адсорбцию фага на бактерии.

Резистентность к факторам окружающей среды. Фаги более устойчивы к действую физических и химических факторов, чем бактерии и вирусы. Они выдерживают давление до 6 000 атм, сохраняют свою активность при рН от 2,5 до 8; не все дезинфицирующие вещества (0,5% раствор фенола, 1% раствора сулемы, этиловый спирт, эфир, хлороформ) разрушают фаги. Однако ультрафиолетовые лучи и ионизирующая радиация, 1% раствор формалина, температура 65-70°С инактивируют их. Они сохраняются длительное время при высушивании в запаянных ампулах, замораживании, в глицерине при температуре 185°С.

Антигенные свойства. Бактериофаги обладают иммуногенными свойствами, вызывают синтез антител (AT), которые не дают перекрестных реакций с антигенами (АГ) бактерий, инфицированных фагами. Для идентификации фагов применяют реакцию нейтрализации с гомологичной антисывороткой, реакцию преципитации, реакцию агглютинации. По антигенам фаги делятся на серотипы.

Взаимодействие фагов с бактерией включает несколько стадий.

Адсорбция фагов на бактерии осуществляется рецепторами фага, имеющимися на конце отростка, которые связываются с поверхностными структурами бактериальной стенки. Бактериофаги не адсорбируются на бактериях, лишенных клеточной стенки (протопластах). Некоторые фаги адсорбируются на F-пилях бактерий. Адсорбция фагов зависит от рН среды, температуры, наличия некоторых веществ (триптофана для Т2-фага). На одной клетке может адсорбироваться до 300 фагов.

Внедрение нуклеиновой кислоты фага (инъекция фага). Базальная пластина отростка и его лизоцим лизируют участок клеточной стенки бактерии. Одновременно в чехле высвобождаются ионы кальция, активирующие АТФ-азу, происходит сокращение чехла и вталкивание стержня отростка через мембрану в бактерию. При этом фаговая ДНК (РНК) через стержень впрыскивается в цитоплазму клетки, белки головки и отростка остаются снаружи.

Репродукция фага. Проникнув в клетку ДНК фага переходит в латентное состояние (скрытая – эклипс-фаза). В этот период она подавляет синтетические клеточные процессы клетки и индуцирует синтез фаговых белков.

Синтез фаговых белков. Бактериальная РНК-полимераза транскрибирует фаговую ДНК в мРНК, по которой в рибосомах синтезируются ранние белки фага и его РНК-полимераза. Последняя обеспечивает транскрипцию поздних белков оболочки..

Репликацию фаговой нуклеиновой кислоты осуществляют синтезированные в клетке ДНК-полимеразы. ДНКбактерии нередко расщепляется и служит материалом для синтеза нуклеиновой кислоты фага.

Сборка фаговых частиц заключается в заполнении фаговой ДНК пустотелых капсид головки. Весь процесс осуществляется за 40 минут. Выход зрелых фагов обычно происходит путем лизиса бактериальной клетки. Лизис чаще всего осуществляется фаговым лизоцимом. Фаги, лизировавшие бактерии, называют вирулентными и они могут находиться в двух состояниях: 1) в виде зрелого фага – метаболически инертного, существующего вне клетки, и 2) вегетативного, который размножается в клетке и вызывает «продуктивную» инфекцию у бактерий. Некоторые ДНК-содержащие фаги (фаг fd) выходят из клетки путем «просачивания» ДНК через цитоплазматическую мембрану и клеточную стенку бактерии, где упаковываются в капсиды.

Взаимодействие фагов с бактериальной клеткой характеризуются высокой специфичностью. Моновалентные фаги взаимодействуют только с бактериями определенного вида, а типовые фаги – только с отдельными вариантами (типами) данного вида бактерий. Типоспецифические бактериофаги используют для выявления соответствующих бактерий – т.е. для их фаготипирования. Поливалентные фаги могут взаимодействовать с родственными видами бактерий.

Умеренные фаги и лизогения.Взаимодействие фага с клеткой иногда ведет к интеграции его генома в геном бактерии. Фаги, вызывающие данный тип взаимодействия, называют умеренными. ДНК умеренного фага встраивается в ДНК бактерии и такой фаг называют профагом. Таким образом, умеренные фаги бывают в трех состояниях: зрелый фаг, вегетативный фаг и профаг. Профаг, ставший частью хромосомы бактерии, при ее размножении реплицируется синхронно с ее геномом, но не вызывает бактериолизиса, а передается по наследству от клетки к клетке неограниченному числу потомков.

Явление интеграции генома бактерии с умеренным фагом в состоянии профага называется лизогенией, а бактерии, несущие профаг – лизогенными. Бактериальная клетка, несущая в себе профаг, становится резистентной к действию идентичного фага. В клетке вырабатываются репрессоры – белки генома профага, препятствующие его размножению и проникновению в клетку идентичных фагов. Связь генома профага и бактерии непостоянна и под действием ультрафиолетовых лучей, радиации, некоторых химических веществ возможно образование зрелых форм фага и лизис бактерии. Эти фаги, бывшие профагами, могут со своей ДНК переносить группы генов бактерии в другую бактерию, в которой они снова переходят в профаг. Бактерия, зараженная таким фагом, приобретает новые свойства за счет генов предыдущей бактерии, перенесенных дефектным фагом. Изменение свойств микроорганизмов под влиянием профага обозначается как фаговая лизогенная конверсия. Она может происходить у многих видов микроорганизмов и сопровождается изменением их различных свойств: культуральных, биохимических, антигенных, токсигенных, чувствительности к антибиотикам. Причиной ее может быть наряду с переносом генов других бактерий с помощью фага, также активация молчащих генов бактерий, когда гены профага выступают в роли промоторов.

Явление переноса генов бактерий умеренными фагами называют трансдукцией. Эти фаги обычно неспособны образовывать фаговое потомство, если в их нуклеиновую кислоту встроилась часть нуклеиновой кислоты бактериальной клетки. Трансдуцирующие фаги используют в качестве векторов (переносчиков) в генной инженерии. С их помощью в бактерии переносят гены человеческих клеток, синтезирующие гормоны, цитокины и др.

Получение фагов. Для получения вирулентного фага готовят фильтрат исходного материала (вода, фильтрованная суспензия фекалий и др.), пропуская его через бактериальные фильтры.

Фильтрат вместе с соответствующей бактериальной культурой засевают в бульон и инкубируют при 37 0 С в течение 18-24 часов. Фаги размножаются, и после лизиса культуры оставшиеся бактериальные клетки удаляют центрифугированием или фильтрацией через бактериальный фильтр.

Титрование бактериофаговпроводят в жидкой (метод Аппельмана) или твердой (метод Грациа) питательной среде.

В пробирках с МПБ готовят десятикратные разведения бактериофага. В каждую пробирку вносят соответствующую бактериальную культуру по 0,1 мл. Через сутки инкубации в термостате при 37 0 С оценивают результаты. Наибольшее разведение фага, в котором отсутствует рост бактерий, принимаются за титр фага.

По методу Грациа на чашки с МПА наносят смесь фагов и бактерий. Для этого к расплавленному и остуженному до 45°С агару добавляют деситикратные разведения бактериофага и соответствующую тест культуру. Смесь быстро выливают на поверхность МПА. После застывания второго слоя агара чашки инкубируют при 37°С. Незараженные фагом бактерии, размножаясь, образуют сплошной газон роста на поверхности агара.

Каждая инфицированная фагом бактерия лизируется и освобождает потомство фага, состоящие из сотен новых фаговых частиц. Они внедряются в интактные клетки и весь цикл повторяется. В результате лизиса клеток фагом на сплошном бактериальном газоне появляются стерильные пятна. Число этих пятен соответствуют количеству фаговых частиц в засеянной смеси. Титр фага – максимальное разведение фага, при котором еще отмечаются стерильные пятна лизиса.

Практическое использование фагов.Применение фагов основано на строгой специфичности их действия. Фаги используют в диагностике инфекционных болезней: проводят идентификацию выделенных культур микроорганизмов – фаготипирование, т.е. устанавливают с помощью фага принадлежность неизвестной выделенной культуры бактерии к определенному виду или типу. Фаготипирование имеет большое эпидемиологическое значение, так как позволяет установить источник и пути распространения инфекций; с помощью тест-культуры можно определить неизвестный фаг в исследуемом материале, что указывает на присутствие в нем соответствующих возбудителей.

Читайте также:  Статья 609 ГК Форма и государственная регистрация договора аренды

Фаги применяют для лечения и профилактики инфекционных болезней. Налажено производство брюшнотифозного, сальмонеллезного, дизентерийного, протейного, синегнойного, стафилококкового, стрептококкового, коли-фагов и комбинированных фагов. Фаги выпускают в жидком виде, в таблетках с кислотоустойчивым покрытием, в форме мазей, аэрозолей, свечей.

Бактериофаги используют для изучения структуры генома бактерий и в генной инженерии в качестве вектора – переносчика генов человека в бактерии. В настоящее время получены культуры бактерий, синтезирующие интерферон, интерлейкины, гормоны человека.

Источник

Методы выделения, культивирования и идентификации вирусов

Лабораторные исследования при проведении идентификации вирусов и диагностике вирусных инфекций включают следующие этапы: выделение, культивирование, индикация (выявление) и идентификация вирусов.

2.3.1 Культивирование вирусов

Вирусы не растут на искусственных питательных средах, а размножаются только внутриклеточно. Крупным достижением было предложение Р. Гудпасчура в 1932 г. использовать для культивирования вирусов куриные эмбрионы. Окончательное решение проблемы культивирования вирусов оказалось возможным лишь после того, как были разработаны основные способы культивирования клеток вне организма.

Использование куриных эмбрионов. Куриные эмбрионы – практически идеальные модели для культивирования некоторых вирусов (например, гриппа и кори). Замкнутая полость эмбриона препятствует проник­новению микроорганизмов извне, а также развитию спонтанных вирусных инфекций. Эмбрионы применяют для первичного выделения вирусов из патологического материала; для пассирова­ния и сохранения их, а также для получения необходимых количеств вируса. Некоторые возбу­дители (например, герпесвирусы) вызывают характерные изменения (по ним можно распозна­вать заболевание).

Для заражения обычно используют куриные эмбрионы 7–12-дневного возраста. Перед заражением определяют жизнеспособность эмбриона путем овоскопирования (просматривают в проходящем свете). Живые эмбрионы при овоскопировании проявляют двигательную активность, хорошо виден сосудистый рисунок. Простым карандашом очерчивают границы воздушной камеры.

Куриные эмбрионы заражают вируссодержащим материалом в асептических условиях стерильными инструментами, предварительно обработав скорлупу над воздушным пространством йодом и спиртом. Заражение проводят на хорион-аллантоисную оболочку, в амниотическую или аллантоисную полость, либо в желточный мешок (рисунок 29). Выбор метода заражения зависит от биологических свойств вируса.

Рисунок 29 – Схематическое изобра­жение развивающегося куриного эмбриона

Культура клеток. Вначале был использован метод переживающих тканей. Он заключался в том, что в колбу, содержащую питательную среду, вносили кусочек ткани. Клетки некоторых тканей в таких условиях могут пережи­вать (но не размножаться) до 30 дней, а в них могут размножаться вирусы. Однако этот способ давал очень небольшой выход вирусов. Необходимо было разработать условия, при которых клетки ткани могли бы свободно размножаться.

Для получения культур клеток необхо­димо было решить четыре главных задачи:

– получить в необходимом количестве свободные (т. е. изолированные друг от друга) клетки;

– создать такие питательные среды и условия, в которых клетки могли бы активно размножаться;

– обеспечить условия, при которых в культурах клеток не могли бы размножаться бактерии;

– определить методы, с помощью которых можно было бы распознавать рост вируса в культуре клеток и идентифицировать его.

Для выделения изолированных (разобщенных), но жизнеспособных клеток из разрушенных тканей, стали использовать обработку их слабым раствором трипсина, разрушающего межкле­точные мостики. Для культивирования клеток были предложены различные среды, содержащие все необходимые для размножения клеток питательные вещества (аминокислоты, основания, витамины и другие), минеральные соли, имеющие оптимальную рН и т. д. К питательным средам добавляли индикатор, по изменению цвета которого можно было судить о метаболизме клеток и их размноже­нии. Было установлено, что в качестве основы, на которой клетки размножаются и образуют монослой, может быть использовано хорошо обработанное стекло пробирок и колб. Для подавления возможного роста бактерий вируссодержащий материал перед посевом его в культуры клеток стали обраба­тывать антибиотиками.

В 1949 г. Дж. Эндерс, Т. Веллер и Ф. Роббинс показали, что вирус полиомиелита хорошо размножается в первично-трипсинизированных культурах клеток, полученных из почек обезьян. Основной недостаток первично-трипсинизированных клеток заключается в том, что после нескольких пересевов они перестают размножаться. Поэтому предпочтением стали пользоваться культуры таких клеток, которые способны размножаться in vitro бесконечно долго. Такие перевиваемые культуры клеток (клеточные линии характеризуются бессмертием и гетероплоидным кариотипом) получают из опухолевых тканей (HeLa получена из карциномы шейки матки, НЕр-2 – из карциномы гортани; Детройт-6 – из метастаза рака легкого в костный мозг; RН – из опухоли почки человека) или из мутантных клеток с полиплоидным набором хромосом. Однако опухолевые клетки нельзя применять для получения вакцин. Для этих целей используют только культуры таких клеток, которые не содержат никаких контаминантных вирусов и не обладают злокачественностью. Лучше всего этим требованиям отвечают культуры диплоидных клеток.

Полуперевиваемые (диплоидные) культуры клеток – клетки одного генотипа, способные in vitro выдерживать 50–100 пассажей, сохраняя при этом свой исходный диплоидный набор хромосом. Диплоидные линии фибробластов эмбриона человека используются как для диагностики вирусных инфекций, так и при производстве вирусных вакцин. Как оказалось, вирусы могут размножаться не только в культурах клеток, образующих монослой на стекле пробирок, но и в суспензиях живых клеток.

Для обеспечения жизнедеятельности культивируемых клеток необходимы питательные среды. По назначению они делятся на ростовые и поддерживающие. В ростовых питательных средах должно содержаться больше питательных веществ, обеспечивающих активное размножение клеток и формирование монослоя. Поддерживающие среды обеспечивают переживание клеток в уже сформированном монослое в период размножения в них вирусов.

2.3.2 Выделение вирусов

Выделение вирусов в культурах клеток. При выделении вирусов из различных инфекционных материалов (кровь, моча, слизистые отделяемые, смывы из органов) применяют культуры клеток, обладающих наибольшей чувствительностью к предполагаемому вирусу. Для заражения используют культуры в пробирках с хорошо развитым монослоем клеток. Перед заражением клеток питательную среду удаляют и в каждую пробирку вносят по 0,1–0,2 мл взвеси исследуемого материала, предварительно обработанного антибиотиками для уничтожения бактерий и грибов. После 30-60 мин контакта вируса с монослоем клеток удаляют избыток материала, в культуру вносят поддерживающую среду и пробы оставляют в термостате до выявления признаков размножения вируса.

Выделение вирусов на лабораторных животных. При невозможности выделить и идентифицировать вирус стандартными методами in vitro инфекционный материал вводят чувствительным к возбудителю животным, и после развития типичного инфекционного процесса проводят повторное заражение чувствительных клеточных культур. Наиболее часто используют мышей, кроликов и обезьян; для выделения некоторых вирусов (например, вирусов Коксаки) заражают мышат-сосунков. Вследствие дороговизны и сложности содержания лабораторных животных, практически повсеместно их вытеснили кле­точные культуры. Тем не менее животные модели активно используют для изучения особенно­стей патогенеза и формирования иммунных реакций при вирусных инфекциях.

Таким образом, для выделения чистых культур вирусов в лабораторных условиях в настоящее время используются следующие живые объекты (биологические модели): 1) культура клеток (тканей, органов); 2) куриные эмбрионы; 3) лабораторные животные.

2.3.3 Индикация вирусов

Индикация вируса в курином эмбрионе. Индикация вируса в курином эмбрионе производится по гибели эмбриона, положительной реакции гемагглютинации на стекле с аллантоисной или амниотической жидкостью, по образованию фокусных поражений («бляшек») на хорион-аллантоисной оболочке.

Индикация вирусов в культурах клеток. Индикатором наличия вируса в зараженных культурах клеток может служить:

1) развитие специфической дегенерации клеток – цитопатическое действие вируса (ЦПД), имеющее три основных типа: крупно- или мелкоклеточная дегенерация; образование многоядерных гигантских клеток (симпластов); развитие очагов клеточной пролиферации, состоящих из нескольких слоев клеток (гроздевидная дегенерация клеток).

Различают два механизма гибели клеток, вызываемой вирусами, – некроз и апоптоз. Некроз происходит из-за необратимых нарушений целостности клеточных мембран, апоптоз – вследствие фрагментации ядерной ДНК под действием клеточной эндонуклеазы.

Цитопатические эффектыоценивают при микроскопии клеточных культур. По степени поражения клеток выделяют вирусы с высокой или умеренной цитопатогенностью:

2) обнаружение внутриклеточных включений, располагающихся в цитоплазме и/или в ядрах пораженных клеток;

3) положительная реакция гемагглютинации (РГА) или гемадсорбции (РГАдс). Некоторые вирусы, в частности, вирус гриппа, обладают особыми рецепто­рами (гемагглютининами), с помощью которых они адсорбируются на эритроцитах и вызывают их склеивание (гемагглютинацию). Такие вирусы легко обнаруживаются с помощью реакции гемагглютинации или гемадсорбции (эритроциты адсорбируются на инфицированных вирусами клетках куль­туры тканей);

4) феномен бляшкообразования. Широкое распространение получил предложенный в 1952 г. Р. Дюльбекко метод бляшек (негативных колоний), позволяющий производить количественное определение вирусов. Для выделения вирусов монослой клеток после удаления питательной среды заражают вируссодержащим материалом и покрывают слоем агара, содержащего индикатор нейтральный красный. Чашки (флаконы) инкубируют при 37 °С. Через 48–96 ч выявляются пятна – бляшки. Они имеют диаметр 1–3 мм и выглядят неокрашенными на розовом фоне. Пятна возникают за счет цитопатического действия вируса;

5) цветная реакция Солка. О росте вирусов в клетках можно судить с помощью индикатора, добавляемого к питательной среде. Если клетки активно осуществляют метаболизм, рН среды сдвигается в кислую сторону, и среда окрашивается в желтый цвет. В случае размножения вируса клетки погибают, рН среды мало меняется, и она сохраняет первоначальный (малиновый) цвет или (при нейтральной рН) приобретает оранжевый;

6) реакция интерференции (используется при отсутствии ЦПД, гемагглютинации и гемадсорбции): исследуемая культура повторно заражается вирусом, вызывающим ЦПД. В положительном случае ЦПД будет отсутствовать (реакция интерференции положительна). Если в исследуемом материале вируса не было, наблюдается ЦПД.

Кроме того, для обнаружения вируса в культурах клеток могут быть использованы различные серологические реакции.

Индикация вирусов на лабораторных животных. Индикация вируса основана на обнаружении у животных признаков инфекционного заболевания, регистрации их гибели, изучении характера патоморфологических и патогистологических изменений в тканях и органах, выявлении положительной реакции гемагглютинации.

2.3.4 Методы идентификации вирусов

Определение типа вируса (его идентификация) основано на нейтрализации биологической активно­сти вируса с помощью типоспецифических сывороток. Конечный результат ее может быть установлен на основании следующих признаков:

1) нейтрализация цитопатического действия: в культуральную среду, содержащую изучаемый вирус, вносят коммерческую сыворотку (например, к вирусу краснухи при подозрении на неё), инкубируют и заражают вторую культуру; через 1–2 дня в неё вносят известный цитопатогенный вирус. При наличии цитопатогенного эффекта делают вывод о том, что первая культура была заражена вирусом, соответствовавшим антителам примененной сыворотки;

2) нейтрализация реакции гемадсорбции;

3) изменение проявления цветной пробы;

4) задержка (торможение) реакции гемагглютинации: смешивают культуральную среду, со­держащую возбудитель, с известной коммерческой антисывороткой и вносят в культуру клеток. После инкубации определяют способность культуры к гемагглютинации и при её отсутствии делают заключение о несоответствии вируса антисыворотке.

5) нейтрализация в опытах на животных.

Таким образом РН (реакция нейтрализации) основана на подавлении соответствующей реакции, феномена, развития инфекционного процесса после внесения в культуру или введения в организм животного смеси вируса со специ­фичными AT, содержащимися в диагностической сыворотке.

Источник

КУЛЬТИВИРОВАНИЕ ВИРУСОВ

Культивирование вирусов — выращивание вирусов в искусственных условиях путем заражения животных, культур клеток и тканей. Культивирование вирусов производят в диагностических целях (выделение от больных и носителей), при экспериментальной работе (изучение вирусов), для производства вирусных вакцин и диагностикумов.

Гальтье (V. Galtier) впервые осуществил в 1879 г. культивирование вируса бешенства, заразив кролика мозгом больной собаки. Левенштейн (A. Lowenstein, 1919) первый опубликовал данные об успешной передаче вируса герпеса от человека кролику. Грютер (W. Gruter, 1920) доказал возможность культивирования вируса герпеса на кроликах. Способность вируса вакцины (коровьей оспы) репродуцироваться в тканевой культуре была доказана Паркером и Наем (F. Parker, В. N. Nye) в 1925 г. В 1931 г. Вудрафф (А. М. Woodruff) и Э. Гудпасчер показали возможность К. в. на хорион-аллантоисной оболочке эмбрионов кур (вирус оспы птиц).

Читайте также:  Основные вопросы темы 1 Понятие профилактические мероприятия и противоэпидемические мероприятия

Вирусы репродуцируются только в живых клетках, поэтому для их накопления заражают вирусами животных или культуры клеток и тканей. При этом происходит адаптация вируса, полученного из организма больного или носителя, к новым условиям. Чем меньше отличается искусственная система от естественной, тем легче осуществляется адаптация вируса.

Для оптимальной репродукции вируса необходимо использовать наиболее чувствительную систему и проводить заражение сильно разведенным свежим материалом, поскольку инактивированные вирусные частицы могут тормозить размножение инфекционных вирионов. Система, в к-рой вирус проходит полный цикл репродукции, носит название пермиссивной (разрешающей). В непермиссивной (неразрешающей) системе происходит неполный цикл репродукции вируса либо он вообще не репродуцируется. Пермиссивная для данного вируса система может стать для него непермиссивной при изменении условий культивирования, напр, при изменении температуры.

На животных культивируют те вирусы, которые вызывают у них четкую клиническую или патологоанатомическую картину (напр., развитие у мышей параличей при заражении вирусом бешенства или пневмонии при гриппозной инфекции). Многие вирусы лучше растут в мало-дифференцированных тканях эмбрионов птиц и новорожденных млекопитающих, чем в организме взрослых особей.

Для Культивирования вирусов используют мышей, крыс, морских свинок, кроликов, сирийских хомячков, африканских хорьков, обезьян, кур и др. На взрослых мышах культивируют вирусы гриппа, бешенства, многие тогавирусы; мыши-сосунки незаменимы при выращивании ряда вирусов Коксаки и тогавирусов ряда ареновирусов — возбудителей вирусных геморрагических лихорадок.

Сосунков белых крыс и сирийских хомячков часто используют для культивирования онкогенных вирусов. Морские свинки служат для выращивания вирусов ящура, марбургской болезни и др. Из обезьян наиболее часто используют зеленых африканских мартышек и разные виды макаки. Так, изучение вирусов полиомиелита и желтой лихорадки стало возможным после их адаптации к организму макак. Культивирование возбудителей некоторых медленных инфекций (куру, болезни Крейтцфельдта—Якоба), а также вирусов гепатитов А и В впервые удалось при заражении шимпанзе. Чувствительными к вирусу гепатита А также оказались южноамериканские обезьяны мармозеты.

Для получения стандартных результатов животные, используемые для работы с вирусами, должны быть генетически однородными. Этой цели служит инбредное скрещивание лаб. животных — братьев и сестер или родителей и детей, чем достигается возрастающая степень гомозиготности.

Для успешного К. в., помимо вида и возраста животных, имеет значение путь введения материала, что обусловлено тропностью вируса. Поэтому в большинстве случаев для размножения вируса в организме животного необходима его инокуляция в чувствительную ткань. Лишь некоторые вирусы патогенны для животных при любых способах инокуляции (напр., вирус венесуэльского энцефалита лошадей для мышей).

Большинство нейротропных вирусов культивируют путем введения их в полушария головного мозга животных. Этим путем заражают мышей различными тогавирусами, буньявирусами и другими арбовирусами. Вирус бешенства вводят таким же образом мышам, кроликам, овцам и собакам, вирус лимфоцитарного хориоменингита — мышам и морским свинкам. При культивировании вируса полиомиелита на обезьянках его инокулируют в спинной мозг или таламус головного мозга. Часто при культивировании нейротропных вирусов их вводят животным в брюшную полость, однако этот путь инокуляции уступает по чувствительности внутримозговому. Респираторные вирусы культивируют обычно путем интраназального заражения — их закапывают в нос наркотизированным животным или вводят в виде аэрозоля в специальной камере.

Аденовирусы инокулируют сирийским хомячкам подкожно или в слизистую оболочку защечных мешков, вирус герпеса обезьян — кроликам внутрикожно, а оспенные вирусы — на скарифицированную кожу (кроликам, телятам, курам). Вирусы оспы и герпеса можно культивировать на скарифицированной роговице кролика. Введение вирусов в мышцу, внутривенно, через рот и per rectum применяют редко. Внутривенное заражение морских свинок, хомячков и хорьков технически сложно, вместо этого материал чаще вводят в полость сердца.

Культивирование вирусов на животных очень затрудняется наличием в их организме различных бактерий, микоплазм и вирусов, которые могут загрязнить культивируемый вирус. Иногда вирус, находящийся в организме животного, создает иммунитет к культивируемому вирусу, напр, возбудитель эктромелии у мышей к вирусу вакцины.

Для уменьшения риска загрязнения культивируемых вирусов посторонними возбудителями все чаще используют животных, выращенных в условиях изоляции. С этой целью получают животных, свободных от специфических для данного вида патогенных агентов,— SPF (specific pathogen free). У их матерей не должно быть инфекций, передающихся через плаценту. Детенышей извлекают при помощи кесарева сечения, вводят им в кишечник апатогенные бактерии, напр, молочнокислые, после чего они вскармливаются SPF самками. В дальнейшем эти животные размножаются обычным путем. Содержат их в закрытых помещениях, куда подается стерильный воздух, пища, вода и пр.

Животных, свободных от всяких возбудителей, содержат в специальных боксах в условиях еще более строгой изоляции (см. Стерильные животные).

Эмбрионы птиц с их малодифференцированными тканями пригодны для культивирования очень многих вирусов. Для получения оптимальных результатов имеет значение вид и возраст эмбрионов, путь заражения, введенная доза и температура инкубации. Чаще всего используют эмбрионы кур. Они наиболее чувствительны до 13-го дня инкубации. Инокулируют вирусы обычно на хорион-аллантоисную оболочку, в желточный мешок, аллантоисную и амниотическую полость; в мозг эмбрионов и внутривенно (в сосуды оболочек) вирусы вводят редко. В желточном мешке культивируют многие тогавирусы; вирусы гриппа и инфекционного паротита хорошо культивируются в амниотической полости 10 —11-дневных эмбрионов, при этом вирус гриппа размножается не только в клетках амниона, но также в трахее и легких эмбриона. Вирусы оспенной группы и др. культивируют на хорион-аллантоисной оболочке, заражая 10—13-дневные эмбрионы через естественный воздушный мешок или через отверстие на боковой поверхности яйца после создания искусственного воздушного мешка. При заражении любым путем эмбрионы могут быть травмированы, поэтому их гибель в первые 24 часа расценивается как неспецифическая. Оптимальное количество вируса при заражении — 1000 — 10 000 инфекционных доз. К. в. в эмбрионах обычно происходит при t° 36—37°. Некоторые вирусы, напр, вирус вакцины, могут размножаться при температуре выше 40°, в то время как возбудитель натуральной оспы необходимо культивировать при температуре не выше 38,5°. Температурно-чувствительные мутанты вирусов, обладающие, как правило, сниженной патогенностью, культивируют при t° 25—28°.

При размножении в эмбрионах вирусы могут вызвать их гибель (многие арбовирусы, вирус энцефаломиокардита и др.), появление изменений на хорион-аллантоисной оболочке (оспенные вирусы) или в теле эмбриона, накопление в эмбриональных жидкостях гемагглютининов (вирусы гриппа, паротита) и комплементсвязывающего вирусного антигена.

Большинство известных вирусов можно выращивать в культурах клеток и тканей (см.). Чаще всего используют однослойные первичные или перевиваемые клеточные культуры на стекле, реже применяют суспензионные культуры. К первичным культурам клеток вирусы адаптируются легче, чем к перевиваемым. Вирусы человека лучше всего размножаются в культурах человеческих клеток и почечных клеток обезьян.

Оптимальная доза вируса при заражении — 0,1—0,001 50% тканевой цитопатической дозы вируса на клетку. Объем инокулята должен быть небольшим. Адсорбцию вируса проводят в течение 1—2 час. при t° 37°, после чего инокулят удаляют, если он токсичен для клеток. Питательная среда должна иметь pH 6,9 — 7,2. Если к ней прибавлена сыворотка, последняя не должна содержать антител или неспецифических ингибиторов по отношению к культивируемому вирусу. Наиболее интенсивная репродукция большинства вирусов происходит при t 36 — 37°; при более низкой температуре (33°) культивируют риновирусы.

При К. в. с целью их выделения из инфицированных органов весьма эффективно культивирование клеток самой исследуемой ткани после ее трипсинизации (напр., ткани миндалин для выделения аденовирусов).

Размножение большинства вирусов сопровождается цитопатическими изменениями. Максимальное количество вируса в культуре обычно наблюдается при дегенерации 75% клеток. Размножение вирусов, не обладающих цитопатической активностью, можно установить с помощью реакции гемадсорбции (многие миксо- и тогавирусы), методом иммунофлюоресценции, путем исследования культуральной жидкости на наличие гемагглютининов (напр., миксовирусы) или комплементсвязывающего вирусного антигена, а также в опытах на животных (вирус бешенства). Некоторые вирусы можно выявить по их способности подавлять размножение цитопатогенного вируса, т. е. по феномену интерференции (напр., в культурах клеток эмбрионов кур, инфицированных вирусами лейкоза птиц, не размножается вирус саркомы Рауса). Некоторые вирусы образуют в клетках включения.

Большинство вирусов после размножения в клетках выходит в культуральную среду, ряд других остается связанным с клетками (вирусы оспы, аденовирусы), некоторые герпетические вирусы необходимо пересевать вместе с неповрежденными клетками, поскольку при разрушении клеток они инактивируются. Иногда при взаимодействии вируса и клетки развивается хроническая инфекция. Напр., инфицированные вирусом лимфоцитарного хориоменингита перевиваемые человеческие клетки могут продуцировать инф. вирус в продолжение многих поколений.

Для выращивания коронавирусов человека и некоторых других используют тканевые культуры, т. е. культивируемые вне организма тканевые фрагменты. Чаще всего используют ткань трахеи кролика. О размножении вируса в этом случае судят по прекращению движения ресничек культуры ткани.

Следует учитывать возможность присутствия в культурах клеток и тканей различных вирусов и микоплазм. Они могут быть внесены вместе с клетками, если последние взяты из инфицированного организма, попасть из трипсина или используемой в качестве ингредиента питательной среды сыворотки.

Адаптация вируса к искусственным условиям размножения требует проведения нескольких пассажей, быстро следующих друг за другом при заражении небольшой дозой вируса. Обычно интенсивность репродукции вируса при этом значительно возрастает. Иногда вирус после адаптации к одной системе приобретает способность размножаться также в других системах. Свежевыделенные вирусы более пластичны, чем долго культивировавшиеся в каких-либо одних условиях. К. в. в искусственных условиях нередко приводит к снижению их патогенности для естественных хозяев, чем пользуются для получения вакцинных штаммов. В неблагоприятных условиях культивирования (малочувствительных системах или при заражении слишком большой дозой) могут формироваться дефектные вирусные частицы, содержащие лишь часть генома или не имеющие нуклеиновой к-ты. Некоторые вирусы вообще не удается культивировать в искусственных условиях или их репродукция прекращается после нескольких пассажей.

Сохранять вирусы в течение нескольких дней можно при t° 4° в среде с pH ок. 7,0. Устойчивость их возрастает при удалении клеточных фрагментов и прибавлении сыворотки (10%), глицерина (50%) или обезжиренного молока (50%). Все вирусы хорошо сохраняются при t° —70° и ниже в герметически закрытых сосудах; многие остаются жизнеспособными месяцы и даже годы. Оспенные вирусы и энтеровирусы хорошо сохраняются при t° —20°. Замораживание вируса должно происходить быстро. Для повышения устойчивости вируса прибавляют к среде сывороточный белок, куриный желток, пептон, сахарозу или глюкозу. Влияние стабилизаторов на разные вирусы неодинаково. Вирусы могут оставаться жизнеспособными длительное время и после лиофилизации. В качестве стабилизаторов при этом используют пептон (10%), молоко (50%), сахарозу с желатиной или куриным желтком (по 10 %). Лиофилизированный вирус должен сохраняться в вакууме или нейтральном газе (напр., азоте) при t° 4° или —15°.

Библиография: Лабораторная диагностика вирусных и риккетсиозных заболеваний, под ред. Э. Леннета и Н. Шмидт, пер. с англ., М., 1974; Соколов М. И., Синицкий А. А. и Ремезов П. И. Вирусологические и серологические исследования при вирусных инфекциях, Л., 1972; Штарке Г. и др. Практическая вирусология, пер. с нем., М., 1970, библиогр.; Comparative diagnosis of viral diseases, ed. by E. Kurstak a. C. Kurstak, v. 1—2, N. Y. a. o., 1977.

Источник