Меню

7 1 2 Дисперсионный анализ для связанных выборок



Тесты

Аддитивная модель содержит компоненты в виде …

комбинации слагаемых и сомножителей

В линейной регрессии Y=b0+b1X+e параметрами уравнения регрессии являются: (неск)

В правой части приведенной формы системы одновременных уравнений, построенной по перекрестным данным (cross-section data) без учета временных факторов, могут стоять _______ переменные.

В стационарном временном ряде трендовая компонента …

имеет линейную зависимость от времени

отсутствует

имеет нелинейную зависимость от времени

Величина коэффициента детерминации … (неск)

характеризует долю дисперсии зависимой переменной y, объясненную уравнением, в ее общей дисперсии

рассчитывается для оценки качества подбора уравнения регрессии

□ характеризует долю дисперсии остаточной величины в общей дисперсии зависимой переменной у

□ оценивает значимость каждого из факторов, включенных в уравнение регрессии

Величина коэффициента регрессии показывает …

среднее изменение фактора при изменении результата на одну единицу измерения

на сколько процентов изменится результат при изменении фактора на 1 %

значение тесноты связи между фактором и результатом

среднее изменение результата при изменении фактора на одну единицу измерения

Величина коэффициента эластичности показывает …

на сколько процентов изменится в среднем результат при изменении фактора на 1%

во сколько раз изменится в среднем результат при изменении фактора в два раза

предельно допустимое изменение варьируемого признака

предельно возможное значение результата

Временным рядом является совокупность значений …

экономического показателя за несколько последовательных моментов (периодов) времени

последовательных моментов (периодов) времени и соответствующих им значений экономического показателя

□ экономических однотипных объектов по состоянию на определенный момент времени

□ экономического показателя для однотипных объектов на определенный момент времени

Выберите верные утверждения по поводу структурной формы системы эконометрических уравнений:

□ каждое уравнение системы может рассматриваться в качестве отдельного уравнения регрессии зависимости одной переменной от группы факторов

□ система регрессионных уравнений, матрица коэффициентов которых симметрична

эндогенные переменные в одних уравнениях могут выступать в роли независимых переменных в других уравнениях системы

система одновременных уравнений описывает реальное экономическое явление или процесс

Гомоскедастичность остатков подразумевает …

рост дисперсии остатков с увеличением значения фактора

максимальную дисперсию остатков при средних значениях фактора

уменьшение дисперсии остаток с уменьшением значения фактора

одинаковую дисперсию остатков при каждом значении фактора

Диаграмма рассеяния указывает на нелинейную зависимость. В этом случае следует осуществить … (неск)

расчет линейного коэффициента корреляции и использование линейной модели

включение в модель дополнительных факторных признаков

визуальный подбор функциональной зависимости нелинейного характера, соответствующего структуре точечного графика

подбор преобразования переменных, дающего наибольшее по абсолютной величине значение коэффициента парной корреляции

Для линейного уравнения регрессии у = а + bx + e метод наименьших квадратов используется при оценивании параметров…(неск)

Для расчета критического значения распределения Стьюдента служат следующие параметры:

□ количество зависимых переменных

объем выборки и количество объясняющих переменных

уровень значимости

К классам эконометрических моделей относятся: (неск)

системы нормальных уравнений

корреляционно – регрессионные модели

модели временных рядов

Компонентами временного ряда являются: (неск)

циклическая (сезонная) компонента

Корреляция подразумевает наличие связи между …

результатом и случайными факторами

переменными

Косвенный метод наименьших квадратов применим для …

неидентифицируемой системы уравнений

неидентифицируемой системы рекурсивных уравнений

любой системы одновременных уравнений

идентифицируемой системы одновременных уравнений

Коэффициент детерминации рассчитывается для оценки качества…

подбора уравнения регрессии

параметров уравнения регрессии

факторов, не включенных в уравнение регрессии

Коэффициент парной корреляции характеризует тесноту ____ связи между _____ переменными.

линейной … двумя

Критические значения критерия Стьюдента определяются по…

двум степеням свободы

трем и более степеням свободы

уровню значимости и одной степени свободы

Метод наименьших квадратов используется для оценивания …

величины коэффициента детерминации

параметров линейной регрессии

величины коэффициента корреляции

средней ошибки аппроксимации

Нелинейным является уравнение регрессии нелинейное относительно входящих в него …

Несмещенность оценки характеризует …

равенство нулю математического ожидания остатков

наименьшую дисперсию остатков

ее зависимость от объема выборки

увеличение точности ее вычисления с увеличением объема выборки

Обобщенный метод наименьших квадратов применяется в случае…

автокорреляции остатков

Под автокорреляцией уровней временного ряда подразумевается _____ зависимость между последовательными уровнями ряда.

корреляционная

При выполнении предпосылок МНК оценки параметров регрессии обладают свойствами: (неск)

несмещенность

эффективность

Предпосылками МНК являются … (неск)

случайные отклонения коррелируют друг с другом

гетероскедастичность случайных отклонений

случайные отклонения являются независимыми друг от друга

дисперсия случайных отклонений постоянна для всех наблюдений

Примерами фиктивных переменных могут служить: (неск)

образование

Примером нелинейной зависимости экономических показателей является …

зависимость объема продаж от недели реализации, выраженная линейным трендом

линейная зависимость затрат на производство от объема выпуска продукции

линейная зависимость выручки от величины оборотных средств

классическая гиперболическая зависимость спроса от цены

Принципиальные сложности применения систем эконометрических уравнений связаны с ошибками…

однородности выборочной совокупности

спецификации модели

определения случайных воздействий

Система эконометрических уравнений включает в себя следующие переменные:

Способами определения структуры временного ряда являются: (неск)

анализ автокорреляционной функции

расчет коэффициентов корреляции между объясняющими переменными

построение коррелограммы

агрегирование данных за определенный промежуток времени

Среди нелинейных эконометрических моделей рассматривают следующие классы нелинейных уравнений: …

внутренне нелинейные

внутреннее линейные

Структурной формой модели называется система ____ уравнений.

взаимосвязанных

Тенденция временного ряда характеризует совокупность факторов, …

оказывающих сезонное воздействие

оказывающих единовременное влияние

оказывающих долговременное влияние и формирующих общую динамику изучаемого показателя

не оказывающих влияние на уровень ряда

Укажите верные характеристики коэффициента эластичности:

коэффициент эластичности показывает на сколько процентов изменится значение результирующего фактора при изменении на один процент объясняющего фактора

□ коэффициент эластичности является постоянной величиной для всех видов моделей

□ коэффициент эластичности показывает на сколько изменится значение результирующего фактора при изменении объясняющего фактора на одну единицу

по значению коэффициента эластичности можно судить о силе связи объясняющего фактора с результирующим

Укажите последовательность этапов оценки параметров нелинейной регрессии Y = a + b*X + c*X².

3□ оцениваются параметры регрессии b0, b1, b2

1□ выполняется замена переменной X2 на Z

2□ задается спецификация модели в виде Y = b0 + b1*X +b2*Z, где b0 = a; b1 = b; b2 =c

4□ определяются исходные параметры из тождеств: a = b0; b = b1; c = b2

Укажите последовательность этапов проведения теста Голдфелда-Квандта для парной линейной регрессии.

4 □ вычисление статистики Фишера

1 □ упорядочение наблюдений по возрастанию значений объясняющей переменной

3 □ оценка сумм квадратов отклонений для регрессий по k-первым и k-последним наблюдений

2 □ оценка регрессий для k-первых и k-последних наблюдений

Укажите справедливые утверждения по поводу критерия Дарбина-Уотсона: (неск)

позволяет проверить гипотезу о наличии автокорреляции первого порядка

изменяется в пределах от 0 до 4

равен 0 в случае отсутствия автокорреляции

применяется для проверки гипотезы о наличии гетероскедастичности остатков

Укажите существующие классы эконометрических систем: (неск)

система нормальных уравнений

система стандартных уравнений

система одновременных уравнений

система независимых уравнений

Укажите требования к факторам, включаемым в модель множественной линейной регрессии: (неск)

между факторами не должна существовать высокая корреляция

факторы должны быть количественно измеримы

факторы должны иметь одинаковую размерность

факторы должны представлять временные ряды

Установите соответствие между видом нелинейной модели и заменой переменных, сводящих ее к линейной регрессии.

1. 2

2. 3

3. 1

4. 4

Установите соответствие между названием модели и видом ее уравнения:

4 у = а*lnx*e;

2 y = a + bx + cx² + e;

3 y = abx *e;

1 y = a + bx + e

Установите соответствие между наименованиями элементов уравнения Y=b0+b1X+e и их буквенными обозначениями:

1. параметры регрессии

2. объясняющая переменная

3. объясняемая переменная

4. случайные отклонения

Установите соответствие между эконометрическими терминами и их определениями.

1. автокорреляция уровней временного ряда

2. коэффициент автокорреляции уровней временного ряда

3. автокорреляционная функция

3□ последовательность коэффициентов автокорреляции первого, второго и т. д. порядков

4□ график зависимости значений автокорреляционной функции от величины лага

1□ корреляционная зависимость между последовательными уровнями ряда

2□ коэффициент линейной корреляции между последовательными уровнями

Фиктивными переменными в уравнении множественной регрессии являются …

качественные переменные, преобразованные в количественные

комбинации из включенных в уравнение регрессии факторов, повышающие адекватность модели

переменные, представляющие простейшие функции от уже включенных в модель переменных

дополнительные количественные переменные, улучшающие решение

Число степеней свободы общей, факторной и остаточной дисперсий связано …

только с числом единиц совокупности

с числом единиц совокупности и видом уравнения регрессии

Читайте также:  Предметное стекло натирают смесью белка с глицерином перед размещением тест

характером исследуемых переменных

только с видом уравнения регрессии

Число степеней свободы связано с числом … (неск)

единиц совокупности (количеством наблюдений)

видом уравнения регрессии

раздел экономической теории, связанный с анализом статистической информации

специальный раздел математики, посвященный анализу экономической информации

наука, которая осуществляет качественный анализ взаимосвязей экономических явлений и процессов

наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов

Источник

7.1 Дисперсионный анализ

Дисперсионный анализ, предложенный Р. Фишером, является статистическим методом, предназначенным для выявления влияния ряда отдельных факторов на результаты экспериментов.

В основе дисперсионного анализа лежит предположение о том, что одни переменные могут рассматриваться как причины (факторы, независимые переменные), а другие как следствия (зависимые переменные). Независимые переменные называют иногда регулируемыми факторами именно потому, что в эксперименте исследователь имеет возможность варьировать ими и анализировать получающийся результат.

Сущность дисперсионного анализа заключается в расчлене­нии общей дисперсии изучаемого признака на отдельные компо­ненты, обусловленные влиянием конкретных факторов, и про­верке гипотез о значимости влияния этих факторов на исследуе­мый признак. Сравнивая компоненты дисперсии друг с другом посредством F — критерия Фишера, можно определить, какая доля общей вариативности результативного признака обусловле­на действием регулируемых факторов.

Исходным материалом для дисперсионного анализа служат данные исследования трех и более выборок, которые могут быть как равными, так и неравными по численности, как связными, так и несвязными. По количеству выявляемых регулируемых фак­торов дисперсионный анализ может быть однофакторным (при этом изучается влияние одного фактора на результаты экспери­мента), двухфакторным (при изучении влияния двух факторов) и многофакторным (позволяет оценить не только влияние каждого из факторов в отдельности, но и их взаимодействие).

Дисперсионный анализ относится к группе параметрических методов и поэтому его следует применять только тогда, когда доказано, что распределение является нормальным. (Суходольский Г.В., 1972; Шеффе Г., 1980).

7.1.1 Однофакторный дисперсионный анализ для несвязанных выборок

Изучается действие только одной переменной (фактора) на исследуемый признак. Исследователя интересует вопрос, как изменяется определенный признак в разных условиях действия переменной (фактора). Например, как изменяется время решения задачи при разных условиях мотивации испытуемых (низкой, средней, высокой мотивации) или при разных способах предъявления задачи (устно, письменно или в виде текста с графиками и иллюстрациями), в разных условиях работы с задачей (в одиночестве, в комнате с преподавателем, в классе). В первом случае фактором является мотивация, во втором – степень наглядности, в третьем – фактор публичности. [1]

В данном варианте метода влиянию каждой из градаций подвергаются разные выборки испытуемых. Градаций фактора должно быть не менее трех.

Пример 1. Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью -1 слово в 5 секунд, второй группе со средней скоростью — 1 слово в 2 секунды, и третьей группе с большой скоростью — 1 слово в секунду. Было предсказано, что показатели воспроизведения будут зависеть от скорости предъявления слов. Результаты представлены в табл. 1.

Таблица 1. Количество воспроизведенных слов (по J . Greene , M D ‘ Olivera , 1989, p . 99)

Группа 1 низкая скорость

Группа 2 средняя скорость

Группа 3 высокая скорость

Дисперсионный однофакторный анализ позволяет проверить гипотезы:

H : различия в объеме воспроизведения слов между группами являются не более выраженными, чем случайные различия внутри каждой группы

H 1 : Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы.

Последовательность операций в однофакторном дисперсионном анализе для несвязанных выборок:

1. подсчитаем SS факт — вариативность признака, обусловленную действи­ем исследуемого фактора. Часто встречающееся обозначе­ние SS — сокращение от «суммы квадратов» ( sum of squares ). Это со­кращение чаще всего используется в переводных источниках (см., на­пример: Гласс Дж., Стенли Дж., 1976).

где Тс – сумма индивидуальных значений по каждому из условий. Для нашего примера 43, 37, 24 (см. табл. 1);

с – количество условий (градаций) фактора (=3);

n – количество испытуемых в каждой группе (=6);

N – общее количество индивидуальных значений (=18);

— квадрат общей суммы индивидуальных значений (=104 2 =10816)

Отметим разницу между , в которой все индивидуальные значения сначала возводятся в квадрат, а потом суммируются, и , где индивидуальные значения сначала суммируются для получения об­щей суммы, а потом уже эта сумма возводится в квадрат.

По формуле (1) рассчитав фактическую вариативность признака, получаем:

2. подсчитаем SS общ – общую вариативность признака:

3. подсчитаем случайную (остаточную) величину SS сл , обусловленную неучтенными факторами:

4. число степеней свободы равно:

5. «средний квадрат» или математическое ожидание суммы квадратов, усредненная величина соответствующих сумм квадратов SS равна:

6. значение статистики критерия F эмп рассчитаем по формуле:

Для нашего примера имеем: F эмп=15,72/2,11=7,45

7. определим F крит по статистическим таблицам Приложения 3 для df 1= k 1=2 и df 2= k 2=15 табличное значение статистики равно 3,68

8. если F эмп F крит, то нулевая гипотеза принимается, в противном случае принимается альтернативная гипотеза. Для нашего примера F эмп > F крит (7.45>3.68), следовательно п ринимается альтернативная гипотеза.

Вывод: различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы (р

7.1.2 Дисперсионный анализ для связанных выборок

Метод дисперсионного анализа для связанных выборок применяет­ся в тех случаях, когда исследуется влияние разных градаций фактора или разных условий на одну и ту же выборку испытуемых. Градаций фактора должно быть не менее трех.

В данном случае различия между испытуемыми — возможный са­мостоятельный источник различий. Однофакторный дисперсионный анализ для связанных выборок позволит определить, что перевешивает — тенденция, выраженная кривой изменения фактора, или индивидуальные различия между испытуемыми. Фактор индивидуальных различий может оказаться более значимым, чем фактор изменения экспериментальных условий.

Пример 2. Группа из 5 испытуемых была обследована с помощью трех экспериментальных заданий, направленных на изучение интеллектуальной, настойчивости (Сидоренко Е. В., 1984). Каждому испытуемому инди­видуально предъявлялись последовательно три одинаковые анаграммы: четырехбуквенная, пятибуквенная и шестибуквенная. Можно ли счи­тать, что фактор длины анаграммы влияет на длительность попыток ее решения?

Таблица 2. Длительность решения анаграмм (сек)

Условие 1. четырехбуквенная анаграмма

Условие 2. Пятибуквенная анаграмма

Условие 3. шестибуквенная анаграмма

Суммы по испытуемым

Сформулируем гипотезы. Наборов гипотез в данном случае два.

Набор А .

Н(А): Различия в длительности попыток решения анаграмм разной длины являются не более выраженными, чем различия, обусловленные случайными причинами.

Н1(А): Различия в длительности попыток решения анаграмм разной длины являются более выраженными, чем различия, обусловлен­ные случайными причинами.

Но(Б): Индивидуальные различия между испытуемыми являются не более выраженными, чем различия, обусловленные случайными причинами.

Н1(Б): Индивидуальные различия между испытуемыми являются более выраженными, чем различия, обусловленные случайными причи­нами.

Последовательность операций в однофакторном дисперсионном анализе для связанных выборок:

1. подсчитаем SS факт — вариативность признака, обусловленную действи­ем исследуемого фактора по формуле (1).

где Тс – сумма индивидуальных значений по каждому из условий (столбцов). Для нашего примера 51, 1244, 47 (см. табл. 2); с – количество условий (градаций) фактора (=3); n – количество испытуемых в каждой группе (=5); N – общее количество индивидуальных значений (=15); — квадрат общей суммы индивидуальных значений (=1342 2 )

2. подсчитаем SS исп — вариативность признака, обусловленную индивидуальными значения испытуемых.

где Ти – сумма индивидуальных значений по каждому испытуемому. Для нашего примера 247, 631, 100, 181, 183 (см. табл. 2); с – количество условий (градаций) фактора (=3); N – общее количество индивидуальных значений (=15);

3. подсчитаем SS общ – общую вариативность признака по формуле (2):

4. подсчитаем случайную (остаточную) величину SS сл , обусловленную неучтенными факторами по формуле (3):

5. число степеней свободы равно (4):

6. «средний квадрат» или математическое ожидание суммы квадратов, усредненная величина соответствующих сумм квадратов SS равна (5):

7. значение статистики критерия F эмп рассчитаем по формуле (6 ):

8. определим F крит по статистическим таблицам Приложения 3 для df 1= k 1=2 и df 2= k 2=8 табличное значение статистики F крит_факт=4,46, и для df 3= k 3=4 и df 2= k 2=8 F крит_исп=3,84

9. F эмп_факт > F крит_факт (6,872>4,46), следовательно п ринимается альтернативная гипотеза.

10. F эмп_исп F крит_исп (1,054 ринимается нулевая гипотеза.

Читайте также:  Когда нужно делать тест для беременных

Вывод: различия в объеме воспроизведения слов в разных условиях являются более выраженными, чем различия, обусловленные случайными причинами (р Индивидуальные различия между испытуе­мыми являются не более выраженными, чем различия, обусловленные случайными причинами.

7.2 Корреляционный анализ

7.2.1 Понятие корреляционной связи

Исследователя нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, могут ли учащиеся с высоким уровнем тревожности демонстрировать стабильные академичес­кие достижения, или связана ли продолжительность работы учителя в школе с размером его заработной платы, или с чем больше связан уровень умственного развития учащихся — с их успеваемостью по математике или по литературе и т.п.?

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией. Корреляционная связь — это согласованное изме­нение двух признаков, отражающее тот факт, что изменчивость одного признака находится в соответствии с изменчивостью дру­гого.

Известно, например, что в среднем между ростом людей и их весом наблюдается положительная связь, и такая, что чем боль­ше рост, тем больше вес человека. Однако из этого правила име­ются исключения, когда относительно низкие люди имеют из­быточный вес, и, наоборот, астеники, при высоком росте име­ют малый вес. Причиной подобных исключений является то, что каждый биологический, физиологический или психологический признак определяется воздействием многих факторов: средовых, генетических, социальных, экологических и т.д.

Корреляционные связи — это вероятностные изменения, которые можно изучать только на представительных выборках методами математической статисти­ки. «Оба термина, — пишет Е.В. Сидоренко, — корреляционная связь и корреляционная зависимость — часто используются как синони­мы. Зависимость подразумевает влияние, связь — любые согласован­ные изменения, которые могут объясняться сотнями причин. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной зависимости, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого.

Корреляционная зависимость — это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака (Е.В. Сидоренко, 2000).

Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (ли­нейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимо­сти полученных коэффициентов корреляции.

Корреляционные связи различаются по форме, направлению и степени (силе).

По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решае­мых задач в контрольной сессии. Криволинейной может быть, напри­мер, связь между уровнем мотивации и эффективностью выполнения задачи (см. рис. 1). При повышении мотивации эффективность вы­полнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутст­вует уже снижение эффективности.

Рис.1. Связь между эффективностью решения задачи

и силой мотивационной тен­денции (по J. W. A t k in son, 1974, р 200)

По направлению корреляционная связь может быть положитель­ной («прямой») и отрицательной («обратной»). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значе­ниям одного признака — низкие значения другого. При отрицательной корреляции соотношения обратные. При положительной корреляции коэффициент корреляции имеет положительный знак, например r =+0,207 , при отрицательной корреля­ции — отрицательный знак, например r =—0,207 .

Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции.

Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции.

Максимальное воз­можное абсолютное значение коэффициента корреляции r =1,00 ; минимальное r =0,00 .

Общая классификация корреляционных связей (по Ивантер Э.В., Коросову А.В., 1992):

сильная , или тесная при коэффициенте корреляции r >0,70 ;

средняя при 0,50 r ;

умеренная при 0,30 r ;

слабая при 0,20 r ;

очень слабая при r Y могут быть измерены в разных шкалах, именно это определяет выбор соответствующего коэффициента корреляции (см. табл. 3):

Таблица 3. Использование коэффициента корреляции в зависимости от типа переменных

Источник

ТЕСТЫ к практическому занятию по теме. « Методы изучения корреляционных связей.»

« Методы изучения корреляционных связей.»

1. Наиболее простым методом определения степени связи между признаками является:

1) метод Спирмена

2) метод контингенции Пирсона

3) метод стандартизации 1.

2. Наиболее точным методом определения степени связи между качественными признаками является:

1) метод парной корреляции

2) метод ранговой корреляции

3) j 2 (фи-квадрат)

3. Корреляционная связь может быть прямой и

4. Коэффициент корреляции, равный нулю, свидетельствует:

1) об отсутствии связи между явлениями

2) о слабой связи между явлениями

3) о слабой отрицательной связи между явлениями

5. Коэффициент корреляции, равный единице, свидетельствует:

1) о наличии функциональной связи между явлениями

2) о наличии сильной корреляционной связи между явлениями

6. Коэффициент ранговой корреляции рассчитывается при числе коррелируемых пар:

7. Связь между признаками считается статистически значимой, если величина коэффициента корреляции больше или равна табличной при:

8. Связь между признаками считается статистически значимой, если коэффициент корреляции превышает свою ошибку:

1) в 3 и более раз

2) в 2 и более раза

3) в 1,5 и более раза

9. Коэффициент корреляции, равный «-0,3», свидетельствует:

1) о слабой отрицательной связи между явлениями

2) о средней отрицательной связи между явлениями

3) об отсутствии связи между явлениями

10. Корреляционная связь характеризуется соответствием:

1) нескольких значений одного признака одному значению второго признака;

2) одного значения первого признака строго определенному значению второго признака.

11. Практическое использование корреляционного анализа:

1) расчет обобщающих коэффициентов, характеризующих различные стороны каждого из изучаемых признаков;

2) сравнение степени однородности исследуемых совокупностей;

3) определение пределов возможных колебаний совокупностей;

4) выявление взаимодействия факторов, определение силы и направления влияния одних факторов на другие.

12. Корреляционный анализ используется для :

1) расчета обобщающих коэффициентов, характеризующих различные стороны каждого из изучаемых признаков;

2) сравнения степени однородности исследуемых совокупностей;

3) определение пределов возможных колебаний выборочных показателей при данном числе наблюдений;

4) выявления взаимодействия факторов, определение силы и направленности.

13. Корреляционной называется связь:

1) дающая полную характеристику совокупности по ее гомогенности, особенности распределения двух сравниваемых признаков;

2) при которой значению каждой величины одного признака соответствует несколько значений другого взаимосвязанного с ним признака;

3) при которой любому значению одного из признаков соответствует строго определенное значение другого взаимосвязанного с ним признака.

14. Функциональной называется связь:

1) при которой значению каждой величины одного признака соответствует несколько значений другого взаимосвязанного с ним признака;

2) дающая полную характеристику совокупности по ее гомогенности, особенности распределения двух сравниваемых признаков;

3) при которой любому значению одного из признаков соответствует строго определенное значение другого взаимосвязанного с ним признака.

15. Корреляционная связь определяется, как связь:

1) при которой любому значению одного из признаков соответствует строго определенное значение другого взаимосвязанного с ним признака;

2) при которой значению каждой величины одного признака соответствует несколько значений другого взаимосвязанного с ним признака;

3) дающая полную характеристику совокупности по ее гомогенности, особенности распределения двух сравниваемых признаков.

16. Расчет коэффициента ранговой корреляции используется для:

1) определения взаимосвязи между двумя меняющимися признаками;

2) установление связи между несколькими статистическими совокупностями;

3) для характеристики корреляций в случаях нелинейной связи и для данных, распределение которых отличается от нормального;

4) оценки достоверности различия двух величин.

17. Условия для расчета коэффициента ранговой корреляции:

1) для расчета используются негруппированные ряды значений двух признаков;

2) достаточно ориентировочных данных об уровне признака;

3) расчет изменения величины одного признака при изменении величины другого признака на единицу;

4) расчет производится только между количественными признаками.

18. Укажите правильную формулу для расчета коэффициента ранговой корреляции:

1)

2)

3)

4)

19. Расчет используется для:

1) определения достоверности различия нескольких совокупностей по распределению в них какого-либо признака;

2) оценки достоверности различия двух средних величин;

3) определения взаимосвязи между двумя количественными признаками, один из которых представлен в виде интервалов значений;

4) определения взаимосвязи между двумя меняющимися количественными признаками.

20. Укажите правильную формулу для расчета коэффициента линейной корреляции (Пирсона):

1)

3)

21. Значения коэффициента корреляции, превышающее табличное при Р = 95%, подтверждает статистическую:

2) недостоверность результатов.

22. Значение , превышающее табличное при Р = 95% , подтверждает статистическую:

Читайте также:  Тесто для эклеров в домашних условиях

Источник

ОТветы на синергию. Эконометрика. Автокорреляционная функция это функция от Тип ответа

Скачать 51.5 Kb.

  1. Автокорреляционная функция – это функция от …

Тип ответа: Одиночный выбор

  1. Белый шум – это …

Тип ответа: Одиночный выбор

Модель авторегрессии первого порядка

  1. В условиях гетероскедастичности остатков для оценки параметров эконометрической модели следует использовать …

Тип ответа: Одиночный выбор

Обобщенный метод наименьших квадратов

  1. В результате компонентного анализа временного ряда не может быть получена … модель

Тип ответа: Одиночный выбор

  1. В результате компонентного анализа временного ряда не может быть получена … модель

Тип ответа: Одиночный выбор

  1. Гомоскедастичность означает …

Тип ответа: Одиночный выбор

Постоянство дисперсии случайного члена регрессионного уравнения

  1. Для отсутствия автокорреляции остатков характерно .

Тип ответа: Одиночный выбор

Отсутствие зависимости между остатками текущих и предыдущих наблюдений

  1. Для стационарного процесса в узком смысле не может быть того, что …

Тип ответа: Одиночный выбор

Процесс не является стационарным в широком смысле

  1. Для проверки ряда на стационарность используется тест …

Тип ответа: Одиночный выбор

  1. Для отражения влияния на структуру модели качественных переменных, если они наблюдаемы, применяют … переменные

Тип ответа: Одиночный выбор

  1. Двухшаговый МНК не применяется, если уравнение …

Тип ответа: Одиночный выбор

  1. Для проверки эконометрической модели на гомоскедастичность не применяется тест …

Тип ответа: Одиночный выбор

  1. Для описания тенденции равномерно изменяющихся уровней ряда используют … модель

Тип ответа: Одиночный выбор

  1. Для проверки значимости отдельных коэффициентов множественной регрессии используют …

Тип ответа: Одиночный выбор

  1. Для проверки ряда на стационарность используется тест .

Тип ответа: Одиночный выбор

  1. Если абсолютное значение линейного коэффициента корреляции близко к нулю, то . в линейной форме

Тип ответа: Одиночный выбор

  1. Значимость множественного линейного уравнения регрессии проверяется по …

Тип ответа: Одиночный выбор

  1. Косвенный МНК применяется, если уравнение …

Тип ответа: Одиночный выбор

  1. Ковариация – это …

Тип ответа: Одиночный выбор

Показатель, характеризующий тесноту линейной стохастической связи между переменными

  1. Корреляция – это …

Тип ответа: Одиночный выбор

Явление линейной стохастической связи между переменными

  1. Коэффициент корреляции — это .

Тип ответа: Одиночный выбор

Показатель, позволяющий установить факт наличия линейной

стохастической связи между переменными

  1. Коэффициент детерминации характеризует долю …

Тип ответа: Одиночный выбор

Дисперсии зависимой переменной, объясняемую регрессией в общей ее дисперсии

  1. Коэффициент при независимой переменной в парном линейном

Тип ответа: Одиночный выбор

уравнении регрессии показывает .

Процентное изменение зависимой переменной при однопроцентном изменении независимой переменной

  1. Компонента временного ряда, отражающая влияние постоянно действующих факторов, – это …

Тип ответа: Одиночный выбор

  1. Компонента временного ряда, отражающая влияние периодически действующих факторов, – это …

Тип ответа: Одиночный выбор

  1. Критерий Фишера используется при проверке …

Тип ответа: Одиночный выбор

Статистической значимости модели в целом

  1. Критерий Дарбина-Уотсона используется для проверки гипотезы о …

Тип ответа: Одиночный выбор

Статической зависимости каждого из коэффициентов модели

  1. Критерий Стьюдента применяется для

Тип ответа: Одиночный выбор

Определения статической значимости каждого коэффициента уравнения

  1. Мультиколлинеарность факторов – это …

Тип ответа: Одиночный выбор

Наличие линейной зависимости между несколькими объясняющими переменными

  1. Мультиколлинеарность проявляется между .

Тип ответа: Одиночный выбор

  1. Наличие автокорреляцию в остатках можно обнаружить с помощью

Тип ответа: Одиночный выбор

  1. На главной диагонали ковариационной матрицыS(b)=S2(XTX)-1 находятся …

Тип ответа: Одиночный выбор

Дисперсии коэффициентов регрессии

  1. Наличие автокорреляции остатков можно обнаружить с помощью статистики …

Тип ответа: Одиночный выбор

  1. Наличие тренда в уровнях ряда проверяется с помощью теста …

Тип ответа: Одиночный выбор

  1. Неидентифицируемость системы эконометрических уравнений связана с превышением …

Тип ответа: Одиночный выбор

Числа структурных коэффициентов над числом приведенных

  1. Неверно утверждать, относительно метода наименьших квадратов (МНК) оценки линейной регрессионной модели, что МНК …

Тип ответа: Одиночный выбор

Максимизирует сумму квадратов остатков

  1. Неверно, что к моделям временных рядов относятся…

Тип ответа: Одиночный выбор

  1. Неверный с точки зрения экономической теории, знак коэффициента линейного регрессионного уравнения может свидетельствовать …

Тип ответа: Одиночный выбор

О мультиколлинеарности факторов

  1. Негативным последствием применения классического МНК в случае гетероскедастичности является то, что оценки коэффициентов модели не являются .

Тип ответа: Одиночный выбор

  1. Нулевая гипотеза при проверке коэффициента уравнения регрессии на статистическую значимость гласит, что

Тип ответа: Одиночный выбор

Значение коэффициента равно нулю

  1. Отрицательный характер взаимосвязи между переменными Х и У означает, что …

Тип ответа: Одиночный выбор

С ростом Х происходит убывание У

  1. Ошибка в i-м наблюдении – это разница между значением …

Тип ответа: Одиночный выбор

Объясняющей переменной в i-м наблюдении и прогнозным значением этой переменной

  1. Оценка параметров приведенной формы осуществляется … наименьших квадратов

Тип ответа: Одиночный выбор

Двухшаговым методом

  1. Оценки коэффициентов классической модели, полученные с помощью метода наименьших квадратов, обладают .

Тип ответа: Одиночный выбор

  1. Оценки косвенного МНК совпадают с оценками двухшагового МНК, если для уравнения выполнено …

Тип ответа: Одиночный выбор

Ранговое условие и порядковое условие со знаком равенства

  1. О наличии мультиколлинеарности не свидетельствует факт того, что … близки к единице

Тип ответа: Одиночный выбор

Коэффициенты множественной детерминации некоторых объясняющих факторов с остальными

  1. Остаток в i-м наблюдении – это разница между значением …

Тип ответа: Одиночный выбор

Переменной Y в i-м наблюдении и прогнозным значением этой переменной, полученным по выборочной линии регрессии

  1. При оценке параметров системы одновременных уравнений нецелесообразно применять … метод наименьших квадратов

Тип ответа: Одиночный выбор

Классический

  1. По характеру связи между переменными регрессии в целом подразделяют на две группы – …

Тип ответа: Одиночный выбор

Положительные и отрицательные

  1. При построении регрессионных моделей рекомендуется, чтобы объем выборки превышал число факторов не менее чем .

Тип ответа: Одиночный выбор

В три раза

  1. При сравнении моделей множественной линейной регрессии с разным числом факторов не используют …

Тип ответа: Одиночный выбор

  1. Порядковое условие идентифицируемости структурного уравнения является .

Тип ответа: Одиночный выбор

  1. Порядковое условие идентифицируемости структурного уравнения: число исключенных из уравнения предопределенных переменных должно быть не меньше числа включенных …

Тип ответа: Одиночный выбор

Эндогенных переменных минус единица

  1. Под спецификацией модели понимается …

Тип ответа: Одиночный выбор

Отбор факторов, влияющих на результат и выбор вида уравнения

  1. По числу объясняющих факторов регрессии подразделяют на …

Тип ответа: Одиночный выбор

Парные и множественные

  1. Постоянный коэффициент эластичности имеет … функция

Тип ответа: Одиночный выбор

  1. Ранговое условие идентифицируемости структурного уравнения является …

Тип ответа: Одиночный выбор

Необходимым и достаточным

  1. Ранговое условие идентифицируемости структурного уравнения – ранг произведения расширенной матрицы структурных параметров на транспонированную матрицу ограничений уравнения равен числу эндогенных переменных …

Тип ответа: Одиночный выбор

Системы минус единица

  1. Средний коэффициент эластичности показывает …

Тип ответа: Одиночный выбор

Процентное изменение зависимой переменной при однопроцентном изменении независимой переменной

  1. Стандартизованный коэффициент уравнения применяется для …

Тип ответа: Одиночный выбор

Проверки статистической значимости фактора

  1. Стационарность …

Тип ответа: Одиночный выбор

Можно рассматривать в узком и в широком смысле

  1. Стационарность — это …

Тип ответа: Одиночный выбор

Характеристика временного ряда, связанная с его стабильностью

  1. С помощью средней ошибки аппроксимации оценивают …

Тип ответа: Одиночный выбор

Качество уровня регрессии в целом

  1. Случайный член классической линейной модели множественной регрессии должен быть распределен …

Тип ответа: Одиночный выбор

По нормальному закону

  1. С помощью коэффициента детерминации можно оценить …

Тип ответа: Одиночный выбор

Качество уравнения регрессии в целом

  1. Состоятельная оценка это оценка, обладающая следующим свойством:

Тип ответа: Одиночный выбор

  1. Скорректированный коэффициент детерминации — это коэффициент детерминации, скорректированный с учетом …

Тип ответа: Одиночный выбор

  1. Смещенная оценка искомого параметра обладает следующим свойством:

Тип ответа: Одиночный выбор

Ее математическое ожидание не равно ей

  1. Стохастическая (статистическая) зависимость – это …

Тип ответа: Одиночный выбор

Связь между переменными, сложенная влиянием случайных факторов

  1. Целесообразно использовать обобщенный метод наименьших квадратов, если ошибки модели …

Тип ответа: Одиночный выбор

Обладают свойством гетероскедастичности

  1. Функция регрессии является математическим выражением … между переменными

Тип ответа: Одиночный выбор

  1. Эффективная оценка – это оценка, …

Тип ответа: Одиночный выбор

Источник